IISER Mohali, Knowledge city, Sector 81, SAS Nagar, Manauli PO 140306

Dr. Kavita Dorai
Professor, Physical Sciences

Email kavita(AT)iisermohali.ac.in
Fax +91 172 2240266
Personal Page NMR Spectroscopy Research Group                            
Research Area
Biomolecular NMR & Quantum Computing
Research Focus

I am an NMR spectroscopist whose research is poised at the interface of Physics and Biology. My current research interests include NMR Quantum Computing, Diffusion Studies using Gradient NMR, NMR of Nanomaterials, NMR Methodology Development and Biomolecular Structure and Dynamics Determination.

NMR Quantum Computing: The parallel implementation of the quantum Fourier transform (QFT) on qubits has been shown to have a positive impact on time-cost issues. Recent research in quantum computing has begun to focus on qudit quantum computers (that rely on non-binary quantum logic) as well as hybrid qubit-qudit quantum systems. We have implemented a parallel QFT using selective rotations and numerically optimized pulses on a hybrid qubit-qutrit NMR quantum computer. On-going research includes exploring multipartite entanglement in three qubit systems, quantum Zeno dynamics and decoherence of entangled states.

NMR of Carbon Nanotubes: We have investigated the utility of 19F NMR chemical shift anisotropy (CSA) in the structural characterization of different kinds of zigzag and chiral single-walled carbon nanotubes (SWNTs). A set of fluorine CSA parameters comprising the span, skew and isotropic chemical shift was computed for each form of the SWNTs and multi-dimensional CSA parameter correlation maps were constructed. We have shown that these correlations are able to clearly distinguish between the chiral and zigzag forms of fluorinated carbon nanotubes. On-going research includes studies of interactions of silver nanoparticles with biomolecules.

Diffusion Studies using NMR: Heteronuclear 3D DOSY (diffusion ordered spectroscopy) experiments are useful in elucidating the diffusion coefficients of a mixture, especially in cases where the proton 2D DOSY spectra show considerable overlap. We have performed a novel diffusion-edited 3D NMR experiment that incorporates a BEST-HMQC pulse sequence in its implementation. Along the same lines, we designed a 3D heteronuclear HMBC-based diffusion integrated DOSY experiment (which we call 3D COMPACT-IDOSY) and a 3D multiple-quantum DOSY experiment (3D MQ-DOSY) and demonstrated their efficacy on mixtures of small molecules. On-going research includes quantifying protein diffusion in simulated crowded environments and diffusion in a polymer network.

Selected Publications

  • Investigating correlations in the altered metabolic profiles of obese and diabetic subjects in a South Indian Asian population using an NMR-based metabolomic approach, Navdeep Gogna, K. Murahari, Anup M. O. and Kavita Dorai Molecular BioSystems, 11, 595-606 (2015).
  • Experimental protection against evolution of states in a subspace via a super-Zeno scheme on an NMR quantum information processor, Harpreet Singh, Arvind, and Kavita Dorai, Physical Review A, 90, 052329 (2014).
  • Determining the parity of a permutation using an experimental NMR qutrit, Shruti Dogra, Arvind and Kavita Dorai, Phys. Lett. A, 378, 3452 (2014).
  • 3DChemCorr: Using NMR chemical shift 3D correlation maps as secondary structure identifiers in proteins, Amrita Kumari and Kavita Dorai , J. Mol. St., 1041, 200 (2013).
  • Multiple-spin coherence transfer in linear Ising spin chains and beyond: numerically-optimized pulses and experiments, M. Nimbalkar, R. Zeier, J. L. Neves, S. Begam Elavarasi, H. Yuan, N. Khaneja, Kavita Dorai , S. J. Glaser, Physical Review A, 85, 012325 (2012).
  • Resolving overlaps in diffusion encoded spectra using band-selective pulses in a 3D BEST-DOSY experiment, Matsyendranath Shukla and Kavita Dorai J. Magn. Reson, 213, 69 (2011).
  • Using the 19 F NMR chemical shift anisotropy tensor to differentiate between the zigzag and chiral forms of fluorinated single-walled carbon nanotubes, Amrita Kumari and Kavita Dorai , Phys. Chem. A, 115, 6543 (2011).


Go to top
Template by JoomlaShine