Search for Neutrinoless Double-Beta Decay

Ibrahim Mirza

Department of Physics and Astronomy, The University of Tennessee, Knoxville, United States

Abstract

Are neutrinos their own antiparticles? Search for an extremely rare and yet unobserved nuclear transition—neutrinoless double-beta decay $(0\nu\beta\beta)$ decay if observed would prove neutrinos and antineutrinos are the same—Majorana neutrino. $0\nu\beta\beta$ decay violates lepton number conservation and could explain the origin of matter-antimatter asymmetry in the Universe. Neutrino oscillation proves neutrinos are massive, but the absolute neutrino masses are yet unknown. $0\nu\beta\beta$ decay would provide a model-dependent measurement of the absolute neutrino mass. The experimental search for $0\nu\beta\beta$ decay signal is extremely challenging since it requires a quasi-background-free experiment. The KamLAND-Zen experiment sets the most stringent lower limit on the half-life of $0\nu\beta\beta$ decay: $T_{1/2}^{0\nu} > 3.8 \times 10^{26}$ years, and corresponding upper limits on the absolute neutrino mass are in the range 28–122 meV. The new experiment LEGEND-200 started collecting data. Next-generation ton-scale experiments—LEGEND-1000, nEXO, SNO+, CUPID, KamLAND2-Zen etc are planned. In this talk, I will provide an introductory aspects of neutrinoless double-beta decay and an overview of different planned experiments, with a particular emphasis on the LEGEND-1000.

About the Speaker: Ibrahim Mirza is a sixth-year PhD physics candidate at The University of Tennessee, Knoxville, United States. He works in experimental particle physics, and involved in the search for neutrinoless double-beta decay at LEGEND-1000 experiment. Ibrahim conducts his research at Oak Ridge National Laboratory. His work involves vacuum technology, developing low-radioactivity materials, cleanroom, 3D printing, simulations and data analysis.